{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Irreducible K-Points N\n", "\n", "This module contains the classes that deals with irreducible K-Points at arbitrary order, \n", "as well as a method that finds the points that fit in a given supercell.\n", "\n", "Except for the get_tpoins method, most of the algorithms used in this code will go under a complete overhaul. The basic concept remains. The new algorithm will be similar to that of the kmesh module." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from coordinate_tools import coord_to_string as c2s\n", "from irreducible_kpts_n import get_tpoints, ibz_mesh_n, k_mesh_n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "\n", "## get_tpoints\n", "\n", "This is the method that finds all the points that fit in a given cell, it is used by the k-points finders here as well as the supercell constructors in the periodica. The detailed algorithm is described appendix D of the paper PhysRevB.100.014303.\n", "\n", "#### function get_tpoints(supa, vol=None, decimals=6)\n", "- supa: 2d array of integers, coordinate_parse compatible format\n", " The supercell to find the points that fit in.\n", " The dimension of this matrix determines the dimension of the points.\n", "- vol: int, optional\n", " The volume of the supercell, if provided, will check if the volume match that of the supercell matrix \n", "- decimals: int, optional\n", " The decimal point of the error tolerence for handling floating point precision issues.\n", " \n", "**Examples**:" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "scrolled": false }, "outputs": [ { "data": { "text/plain": [ "array([[0, 0],\n", " [1, 0],\n", " [0, 1]])" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tpoints = get_tpoints(\"2 -1; -1 2\")\n", "tpoints" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "array([[0, 0, 0],\n", " [1, 0, 0],\n", " [0, 1, 0]])" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tpoints = get_tpoints(\"2 -1 0; -1 2 0; 0 0 1\")\n", "tpoints" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "scrolled": false }, "outputs": [ { "data": { "text/plain": [ "array([[0, 0, 0, 0],\n", " [1, 0, 0, 0],\n", " [0, 1, 0, 0],\n", " [0, 0, 0, 1],\n", " [1, 0, 0, 1],\n", " [0, 1, 0, 1],\n", " [0, 0, 1, 0],\n", " [1, 0, 1, 0],\n", " [0, 1, 1, 0]])" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tpoints = get_tpoints(\"2 -1 0 0; -1 2 0 0; 0 0 -1 2; 0 0 2 -1\")\n", "tpoints" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Irreducible K-Points at arbitrary order with symmetry\n", "\n", "While *k_mesh_n* handles the permutation symmetry of the K-Points, *ibz_mesh_n* utilizes *k_mesh_n* to account for both point and permutation symmetry.\n", "\n", "\n", "#### class k_mesh_n(supa,order,tetra=False,tol=1.0E-6)\n", "- order: int\n", " The order of the system, as well as the number of k-point that forms a single Q.\n", "- tol: float\n", " Error tolerence for floating point precision issues.\n", " \n", " \n", "#### class ibz_mesh_n(supa,pgn,lattice_vecs,order=2,tetra=True,tol=1.0E-6)\n", "- pgn: Point_Group or str\n", " The point group of the system.\n", "- lattice_vecs: array of floats\n", " The lattice vectors of the system.\n", "- tetra: bool, optional, default to True, *deprecated*\n", "\n", "Key attributes:\n", "- ksets_ibz_trans: OrderedDict\n", " The permutation and point operation that transforms to a given k-point from the matching irreducible k-point (The point symmetry is actually from the given point to the irreducible).\n", "- ksets_ibz_fraction: List of nested tuple of Fraction\n", " The irreducible Q. The one without \"_fraction\" suffix is the integer version (p point).\n", "- ksets_ibz_map_fraction: \n", " The map between Q and irreducible Q.\n", " \n", "**Examples**:" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "kmesh = ibz_mesh_n(\"2 0 0; 0 2 0; 0 0 1\", 'C6v', np.array([[np.sqrt(3)/2,0.5,0],[np.sqrt(3)/2,-0.5,0],[0,0,1]]), tetra=False)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[((Fraction(0, 1), Fraction(0, 1), Fraction(0, 1)),\n", " (Fraction(0, 1), Fraction(0, 1), Fraction(0, 1))),\n", " ((Fraction(1, 2), Fraction(0, 1), Fraction(0, 1)),\n", " (Fraction(1, 2), Fraction(0, 1), Fraction(0, 1)))]" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "kmesh.ksets_ibz_fraction" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "OrderedDict([(((0, 0, 0), (0, 0, 0)), ((0, 1), 'E', (0, 1))),\n", " (((1, 0, 0), (1, 0, 0)), ((0, 1), 'E', (0, 1))),\n", " (((0, 1, 0), (0, 1, 0)), ((0, 1), 'Ic2x', (0, 1))),\n", " (((1, 1, 0), (1, 1, 0)), ((0, 1), 'Ic2B', (0, 1)))])" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "kmesh.ksets_ibz_trans" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.17" } }, "nbformat": 4, "nbformat_minor": 2 }