Dipole-Dipole effect at second order¶
The detailed equations can be found in papers Phys. Rev. B 50, 13035(R) (1994) and Phys. Rev. B 55, 10355 (1997).
The code not-only provides the dipole-dipole effects on the dynamic matrices at second order, but also the derivative of the effect with respect to q-vector.
The code is developed quite recently, it is in pretty good shape and probably only requires minor variables renaming. One point of concern is that there is a Fortran version of the code developed to improve the speed of the calculation. It is written in Fortran for its easier handling of matrices than C/C++. But it should be discussed whether a C/C++ version is needed, and which is better.
class DipoleDipole(struct, zeu=None, epsilon=None, dataset=None, G_ran=5, Lambda=0.20, factor=1.0, tol=1.0E-6)¶
- struct: periodica compatible structure
- zeu: array of floats, Born effective charges
- epsilon: array of floats, dielectric constants
- dataset: string, path a yaml file containing data including zeu, epsilon, G_ran, Lambda and factor
- G_ran: integer, range of G vectors
- Lambda: float, λ in the equation
- factor: float, unit conversion factor (for VASP the factor is ~14.40)
- tol: float, error tolerance.
There are 2 ways to instantiate the object:
dp = DipoleDipole(
struct="path to struct file", # or a periodica object
dataset="path to epsilon.yml",
)
dp = DipoleDipole(
struct="path to struct file",
zeu=zeu,
epsilon=epsilon,
factor=factor,
)
[6]:
import numpy as np
np.set_printoptions(linewidth=180, suppress=True)
from dipole_dipole import DipoleDipole
[2]:
poscar = """\
PuO2 Fluorite
1.0
0.00000000 2.76451179 2.76451179
2.76451179 0.00000000 2.76451179
2.76451179 2.76451179 0.00000000
1 2
d
0.00000000 0.00000000 0.00000000 Th:p
0.25000000 0.25000000 0.25000000 O:p
0.75000000 0.75000000 0.75000000 O:p"""
factor = 14.40
epsilon = [
[ 4.883362, 0.000000, 0.000000],
[ 0.000000, 4.883362, 0.000000],
[ 0.000000, 0.000000, 4.883362],
]
zeu = [
[[ 5.407510, 0.000000, 0.000000],
[ 0.000000, 5.407790, 0.000000],
[ 0.000000, 0.000000, 5.409020],],
[[ -2.705480, 0.000000, 0.000000],
[ 0.000000, -2.705730, 0.000000],
[ 0.000000, 0.000000, -2.705850],],
[[ -2.705480, 0.000000, 0.000000],
[ 0.000000, -2.705730, 0.000000],
[ 0.000000, 0.000000, -2.705850],],
]
[3]:
dp = DipoleDipole(
struct=poscar,
zeu=zeu,
epsilon=epsilon,
factor=factor,
)
[12]:
dd = np.round(dp.c_dd("1/2 0 0"), 6)
print "real part"
print dd.real
print "imaginary part"
print dd.imag
real part
[[ 6.607385 -6.697344 -6.698868 -1.830306 3.397245 3.397396 1.830306 -3.397245 -3.397396]
[-6.697344 6.608032 6.699215 3.397107 -1.83057 -3.397572 -3.397107 1.83057 3.397572]
[-6.698868 6.699215 6.611206 3.39788 -3.398194 -1.831067 -3.39788 3.398194 1.831067]
[-1.830306 3.397107 3.39788 2.038075 -1.676541 -1.676616 0. -0. -0. ]
[ 3.397245 -1.83057 -3.398194 -1.676541 2.03847 1.676771 -0. -0. 0. ]
[ 3.397396 -3.397572 -1.831067 -1.676616 1.676771 2.038567 -0. 0. 0. ]
[ 1.830306 -3.397107 -3.39788 0. -0. -0. 2.038075 -1.676541 -1.676616]
[-3.397245 1.83057 3.398194 -0. -0. 0. -1.676541 2.03847 1.676771]
[-3.397396 3.397572 1.831067 -0. 0. 0. -1.676616 1.676771 2.038567]]
imaginary part
[[ 0. -0. -0. -0. -0. 0. -0. -0. 0.]
[-0. -0. -0. -0. -0. -0. -0. 0. -0.]
[-0. -0. -0. 0. -0. 0. 0. -0. -0.]
[ 0. 0. -0. -0. -0. 0. -0. -0. -0.]
[ 0. 0. 0. -0. -0. -0. -0. -0. -0.]
[-0. 0. -0. 0. -0. 0. -0. -0. 0.]
[ 0. 0. -0. 0. 0. 0. 0. 0. -0.]
[ 0. -0. 0. 0. 0. 0. 0. 0. 0.]
[-0. 0. 0. 0. 0. -0. -0. 0. 0.]]
[17]:
dd = np.round(dp.c_dd("0 0 0"), 6)
print "real part"
print dd.real
print "imaginary part"
print dd.imag
real part
[[-0.911526 0. 0. 0.455763 0. 0. 0.455763 -0. -0. ]
[ 0. -0.911658 0. 0. 0.455829 0. -0. 0.455829 -0. ]
[ 0. 0. -0.911905 0. 0. 0.455953 -0. -0. 0.455953]
[ 0.455763 0. 0. 0.155948 -0. -0. -0.611711 -0. 0. ]
[ 0. 0.455829 0. -0. 0.155995 -0. -0. -0.611824 -0. ]
[ 0. 0. 0.455953 -0. -0. 0.155925 0. -0. -0.611878]
[ 0.455763 -0. -0. -0.611711 -0. 0. 0.155948 0. 0. ]
[-0. 0.455829 -0. -0. -0.611824 -0. 0. 0.155995 0. ]
[-0. -0. 0.455953 0. -0. -0.611878 0. 0. 0.155925]]
imaginary part
[[ 0. -0. -0. -0. -0. 0. 0. 0. -0.]
[-0. -0. -0. -0. -0. -0. 0. 0. 0.]
[-0. -0. -0. 0. -0. 0. -0. 0. 0.]
[ 0. 0. -0. -0. -0. 0. -0. -0. 0.]
[ 0. 0. 0. -0. -0. -0. -0. -0. -0.]
[-0. 0. -0. 0. -0. 0. 0. -0. 0.]
[-0. -0. 0. 0. 0. -0. 0. 0. -0.]
[-0. -0. -0. 0. 0. 0. 0. 0. 0.]
[ 0. -0. -0. -0. 0. -0. -0. 0. 0.]]
[20]:
# The limit of the dipole dipole effect with q->0 from (1, 0, 0) direction (primitive convention)
dd = np.round(dp.c_dd("0 0 0", q_direction="1 0 0"), 6)
print "real part"
print dd.real
print "imaginary part"
print dd.imag
real part
[[ 7.636021 -8.54799 -8.549934 -3.820737 4.276895 4.277085 -3.820737 4.276895 4.277085]
[-8.54799 7.636775 8.550377 4.276722 -3.821288 -4.277307 4.276722 -3.821288 -4.277307]
[-8.549934 8.550377 7.640416 4.277694 -4.27809 -3.822327 4.277694 -4.27809 -3.822327]
[-3.820737 4.276722 4.277694 2.295562 -2.139812 -2.139907 1.527904 -2.139812 -2.139907]
[ 4.276895 -3.821288 -4.27809 -2.139812 2.296005 2.140105 -2.139812 1.528186 2.140105]
[ 4.277085 -4.277307 -3.822327 -2.139907 2.140105 2.296125 -2.139907 2.140105 1.528322]
[-3.820737 4.276722 4.277694 1.527904 -2.139812 -2.139907 2.295562 -2.139812 -2.139907]
[ 4.276895 -3.821288 -4.27809 -2.139812 1.528186 2.140105 -2.139812 2.296005 2.140105]
[ 4.277085 -4.277307 -3.822327 -2.139907 2.140105 1.528322 -2.139907 2.140105 2.296125]]
imaginary part
[[ 0. -0. -0. -0. -0. 0. 0. 0. -0.]
[-0. -0. -0. -0. -0. -0. 0. 0. 0.]
[-0. -0. -0. 0. -0. 0. -0. 0. 0.]
[ 0. 0. -0. -0. -0. 0. -0. -0. 0.]
[ 0. 0. 0. -0. -0. -0. -0. -0. -0.]
[-0. 0. -0. 0. -0. 0. 0. -0. 0.]
[-0. -0. 0. 0. 0. -0. 0. 0. -0.]
[-0. -0. -0. 0. 0. 0. 0. 0. 0.]
[ 0. -0. -0. -0. 0. -0. -0. 0. 0.]]
Including LO-TO from command line¶
In order to execute LO-TO splitting on some calculation from the command line, do the following:
- you can make the epsilon (dielectric constants + born effective charges) file from the OUTCAR using the following command:
~/git_repos/software/phonons/examples/fourier_interp_Dqn/parse_epsilon.py struct=poscar > epsilon.yml
- Run the Fourier interpolation using the above generated epsilon file:
fourier_interp_Dqn.py epsilon=<path to epsilon file>
- Regenerate the band structure along the desired path throught k-space using the new force constants and the epsilon file:
band_plot_phonons.py epsilon=<path to epsilon file> pos=poscar units=THz band=kinput phi=PhiN_WS.pkl
[ ]: