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Basic idea

I Second quantization is a convenient way to describe identical

particles

I The wave function is symmetric for integer spin particles,

known as Bosons, and antisymmetric for half integer spin

particle, known as Fermions

I Creation operator c†α describes adding a particle with state |α〉
to system. The statistics of wavefunction is unchanged

I Annihilation operator cα describes removing a particle with

state |α〉

I Any particle number conserved operator could be formally

decomposed into the following sequency process: �rst, remove

N particles and add N particles. The states of these particles

are generally di�erent.

I One could represent the operators in matrix form with a

orthonormal basis
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How to describe a many-body state

I Direct produce |α1..αN) = |α1〉 ⊗ |α2〉...⊗ |α3〉

I Symmetrized state (state resulted from applying sequence of

creation operators to vacuum)

|α1...αN} = 1√
N!

∑
P
ξP |αP1〉 ⊗ ...|αPN 〉 ≡ c

†
α1
...c†αN |0〉,

ξ = ±1
I a

†
λ|λ1...λN} ≡ |λλ1...λN} Or [aλ, a

†
µ]± = 〈λ|µ〉

I Normalized state (state to form a orthonoramal basis)

|α1...αN〉 = 1√∏
α nα!
|α1...αN}
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Express many-body operators

I A elegant way to derive the expression is through a basis

transformation

I U =
∑

α Uαnα =
∑

α Uαc
†
αcα and {|α〉} → {|µ〉} results

U =
∑

λµ〈λ|U|µ〉c
†
λcµ. For example:

T = − ~2

2m

ˆ
d3xψ†(x)∇2ψ(x) =

ˆ
d3k

(2π)3
~2k2

2m
c
†
k
ck

U =

ˆ
d3xU(x)ψ†(x)ψ(x) =

ˆ
d3k

(2π)3
Ukc

†
k
ck

Formally, the operators take form obtained from promoting the

average value of one particle operator

I V |αβ) = Vαβ|αβ) Notice there is no self-interaction. So

V = 1

2

∑
αβ nα(nβ − δαβ) =

1

2

∑
αβ(αβ|V |αβ)a

†
αa
†
βaβaα

I And a basis change will lead

V = 1

2

´
d3xd3yψ†(x)ψ†(y)V (x − y)ψ(y)ψ(x)
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Construct and Represent Basis

I For either spin 1

2
or fermionic lattice model, one could use 0

and 1 to describe the local states

I For example, one site Hubbard model, |n↑n↓〉, we have four

states |0〉 = 00 ;| ↓〉 = 01; | ↑〉 = 10; | ↑↓〉 = 11.

I It is convient to seperate orbitals into two parts according to

spin, i.e |n1↑n2↑...nN↑n1↓...nN↓〉
I Use symmetry to block diagonalize the Hamiltonian



Examples (one site Hubbard model)

I H = Un↑n↓ − µ(n↑ + n↓)

I Particle conservation: F = F0 ⊕ F1 ⊕ F2

I F0 = {|0〉} H0 = [0]

I F1 = {| ↑〉, | ↓〉} H1 =

[
−µ 0

0 −µ

]
. (one could further use

spin rotation symmetry, or Sz is conserved)

I F2 = {| ↑↓〉}, H2 = [U]



Examples (two sites Hubbard model)

I H = U(n1↑n1↓ + n2↑n2↓)− t
∑

σ(c
†
1σc2σ + c

†
2σc1σ)− µN

I Particle conservation: F = F0 ⊕ F1 ⊕ F2 ⊕ F3 ⊕ F4

I It is trival to consider the zero particle state and one particle

state. Also, particle hole symmetry. so does three and four

particle state

I There are 4 states with Sz zero |n1↑n1↓n2↑n2↓〉: 1010, 1001,
0110, 0101

I Notice, pay attention to sign for hopping term



Examples (two sites Hubbard model)

I There are 4 states with Sz zero |n1↑n2↑n1↓n2↓〉: 1010, 1001,
0110, 0101

H =


−2µ+ U −t −t 0

−t −2µ 0 −t
−t 0 −2µ −t
0 −t −t −2µ+ U





Examples (two sites Hubbard model)

I One could use translational symmetry to block diagonalize the

Hamiltonian, i.e, eigenstates of momentum:

|ψ1〉 =
1√
2
(|1010〉 − |0101〉)

|ψ2〉 =
1√
2
(|1001〉 − |0110〉)

H =

[
−2µ+ U 0

0 −2µ

]
E = {U − 2µ,−2µ}



Examples (two sites Hubbard model)

I One could use translational symmetry to block diagonalize the

Hamiltonian, i.e, eigenstates of momentum:

|ψ1〉 =
1√
2
(|1010〉+ |0101〉)

|ψ2〉 =
1√
2
(|1001〉+ |0110〉)

H =

[
−2µ+ U −2t
−2t −2µ

]
E = {1

2

(
−4µ−

√
16t2 + U2 + U

)
,
1

2

(
−4µ+

√
16t2 + U2 + U

)
}



Examples (two sites Hubbard model)

Figure : Two sites Hubbard model (eigenvalues for di�erent U)



Examples (two sites Hubbard model)

I H = H0 + α
∑

i
Siz

I For two-particle states, we add more states with Sz 6= 0

|n1↑n2↑n1↓n2↓〉: 1100, 0011 (Sz = 0 includes 1010, 1001,

0110, 0101)

I For 1100, 0011, H =

[
2α− 2µ 0

0 −2α− 2µ

]



Examples (two sites Hubbard model)

I Plot 6 eigenstates

Figure : Two sites Hubbard model (eigenvalues for di�erent U) with
magnetic �eld α = 0.7



Examples (two sites Hubbard model)

Figure : The critical magnetic �eld Bc with U. t = 1.


