Second quantization and Exact diagonalization

For more info, see Negele, etc Chapter 1 of Quantum Many-Particle Systems

June 3, 2015

Basic idea

- Second quantization is a convenient way to describe identical particles
- The wave function is symmetric for integer spin particles, known as Bosons, and antisymmetric for half integer spin particle, known as Fermions

Basic idea

- Second quantization is a convenient way to describe identical particles
- The wave function is symmetric for integer spin particles, known as Bosons, and antisymmetric for half integer spin particle, known as Fermions
- Creation operator c_{α}^{\dagger} describes adding a particle with state $|\alpha\rangle$ to system. The statistics of wavefunction is unchanged
- Annihilation operator c_{α} describes removing a particle with state $|\alpha\rangle$

Basic idea

- Second quantization is a convenient way to describe identical particles
- The wave function is symmetric for integer spin particles, known as Bosons, and antisymmetric for half integer spin particle, known as Fermions
- Creation operator c_{α}^{\dagger} describes adding a particle with state $|\alpha\rangle$ to system. The statistics of wavefunction is unchanged
- Annihilation operator c_{α} describes removing a particle with state $|\alpha\rangle$
- Any particle number conserved operator could be formally decomposed into the following sequency process: first, remove N particles and add N particles. The states of these particles are generally different.

Basic idea

- Second quantization is a convenient way to describe identical particles
- The wave function is symmetric for integer spin particles, known as Bosons, and antisymmetric for half integer spin particle, known as Fermions
- Creation operator c_{α}^{\dagger} describes adding a particle with state $|\alpha\rangle$ to system. The statistics of wavefunction is unchanged
- Annihilation operator c_{α} describes removing a particle with state $|\alpha\rangle$
- Any particle number conserved operator could be formally decomposed into the following sequency process: first, remove N particles and add N particles. The states of these particles are generally different.
- One could represent the operators in matrix form with a orthonormal basis

How to describe a many-body state

- Direct produce $\left.\mid \alpha_{1} . . \alpha_{N}\right)=\left|\alpha_{1}\right\rangle \otimes\left|\alpha_{2}\right\rangle \ldots \otimes\left|\alpha_{3}\right\rangle$

How to describe a many-body state

- Direct produce $\left|\alpha_{1} . . \alpha_{N}\right\rangle=\left|\alpha_{1}\right\rangle \otimes\left|\alpha_{2}\right\rangle \ldots \otimes\left|\alpha_{3}\right\rangle$
- Symmetrized state (state resulted from applying sequence of creation operators to vacuum)

$$
\left.\mid \alpha_{1} \ldots \alpha_{N}\right\}=\frac{1}{\sqrt{N!}} \sum_{P} \xi^{P}\left|\alpha_{P_{1}}\right\rangle \otimes \ldots\left|\alpha_{P_{N}}\right\rangle \equiv c_{\alpha_{1}}^{\dagger} \ldots c_{\alpha_{N}}^{\dagger}|0\rangle,
$$

$$
\xi= \pm 1
$$

$\left.\left.-a_{\lambda}^{\dagger} \mid \lambda_{1} \ldots \lambda_{N}\right\} \equiv \mid \lambda \lambda_{1} \ldots \lambda_{N}\right\} \operatorname{Or}\left[a_{\lambda}, a_{\mu}^{\dagger}\right]_{ \pm}=\langle\lambda \mid \mu\rangle$

How to describe a many-body state

- Direct produce $\left|\alpha_{1} . . \alpha_{N}\right\rangle=\left|\alpha_{1}\right\rangle \otimes\left|\alpha_{2}\right\rangle \ldots \otimes\left|\alpha_{3}\right\rangle$
- Symmetrized state (state resulted from applying sequence of creation operators to vacuum)

$$
\begin{aligned}
& \left.\mid \alpha_{1} \ldots \alpha_{N}\right\}=\frac{1}{\sqrt{N!}} \sum_{P} \xi^{P}\left|\alpha_{P_{1}}\right\rangle \otimes \ldots\left|\alpha_{P_{N}}\right\rangle \equiv c_{\alpha_{1}}^{\dagger} \ldots c_{\alpha_{N}}^{\dagger}|0\rangle, \\
& \xi= \pm 1 \\
& \left.\left.\quad a_{\lambda}^{\dagger} \mid \lambda_{1} \ldots \lambda_{N}\right\} \equiv \mid \lambda \lambda_{1} \ldots \lambda_{N}\right\} \operatorname{Or}\left[a_{\lambda}, a_{\mu}^{\dagger}\right]_{ \pm}=\langle\lambda \mid \mu\rangle
\end{aligned}
$$

- Normalized state (state to form a orthonoramal basis)

$$
\left.\left.\left|\alpha_{1} \ldots \alpha_{N}\right\rangle=\frac{1}{\sqrt{\prod_{\alpha} n_{\alpha}!}} \right\rvert\, \alpha_{1} \ldots \alpha_{N}\right\}
$$

Express many-body operators

- A elegant way to derive the expression is through a basis transformation
- $U=\sum_{\alpha} U_{\alpha} n_{\alpha}=\sum_{\alpha} U_{\alpha} c_{\alpha}^{\dagger} c_{\alpha}$ and $\{|\alpha\rangle\} \rightarrow\{|\mu\rangle\}$ results $U=\sum_{\lambda \mu}\langle\lambda| U|\mu\rangle c_{\lambda}^{\dagger} c_{\mu}$. For example:

$$
\begin{gathered}
T=-\frac{\hbar^{2}}{2 m} \int d^{3} x \psi^{\dagger}(x) \nabla^{2} \psi(x)=\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{\hbar^{2} k^{2}}{2 m} c_{k}^{\dagger} c_{k} \\
U=\int d^{3} x U(x) \psi^{\dagger}(x) \psi(x)=\int \frac{d^{3} k}{(2 \pi)^{3}} U_{k} c_{k}^{\dagger} c_{k}
\end{gathered}
$$

Formally, the operators take form obtained from promoting the average value of one particle operator

Express many-body operators

- A elegant way to derive the expression is through a basis transformation
- $U=\sum_{\alpha} U_{\alpha} n_{\alpha}=\sum_{\alpha} U_{\alpha} c_{\alpha}^{\dagger} c_{\alpha}$ and $\{|\alpha\rangle\} \rightarrow\{|\mu\rangle\}$ results $U=\sum_{\lambda \mu}\langle\lambda| U|\mu\rangle c_{\lambda}^{\dagger} c_{\mu}$. For example:

$$
\begin{gathered}
T=-\frac{\hbar^{2}}{2 m} \int d^{3} x \psi^{\dagger}(x) \nabla^{2} \psi(x)=\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{\hbar^{2} k^{2}}{2 m} c_{k}^{\dagger} c_{k} \\
U=\int d^{3} x U(x) \psi^{\dagger}(x) \psi(x)=\int \frac{d^{3} k}{(2 \pi)^{3}} U_{k} c_{k}^{\dagger} c_{k}
\end{gathered}
$$

Formally, the operators take form obtained from promoting the average value of one particle operator

- $\left.V \mid \alpha \beta)=V_{\alpha \beta} \mid \alpha \beta\right)$ Notice there is no self-interaction. So

$$
V=\frac{1}{2} \sum_{\alpha \beta} n_{\alpha}\left(n_{\beta}-\delta_{\alpha \beta}\right)=\frac{1}{2} \sum_{\alpha \beta}(\alpha \beta|V| \alpha \beta) a_{\alpha}^{\dagger} a_{\beta}^{\dagger} a_{\beta} a_{\alpha}
$$

- And a basis change will lead

$$
V=\frac{1}{2} \int d^{3} x d^{3} y \psi^{\dagger}(x) \psi^{\dagger}(y) V(x-y) \psi(y) \psi(x)
$$

Construct and Represent Basis

- For either spin $\frac{1}{2}$ or fermionic lattice model, one could use 0 and 1 to describe the local states
- For example, one site Hubbard model, $\left|n_{\uparrow} n_{\downarrow}\right\rangle$, we have four states $|0\rangle=00 ;|\downarrow\rangle=01 ;|\uparrow\rangle=10 ;|\uparrow \downarrow\rangle=11$.
- It is convient to seperate orbitals into two parts according to spin, i.e $\left|n_{1 \uparrow} n_{2 \uparrow} \ldots n_{N \uparrow} n_{1 \downarrow} \ldots n_{N \downarrow}\right\rangle$
- Use symmetry to block diagonalize the Hamiltonian

Examples (one site Hubbard model)

- $H=U n_{\uparrow} n_{\downarrow}-\mu\left(n_{\uparrow}+n_{\downarrow}\right)$
- Particle conservation: $F=F_{0} \oplus F_{1} \oplus F_{2}$
- $F_{0}=\{|0\rangle\} \quad H_{0}=[0]$
- $F_{1}=\{|\uparrow\rangle,|\downarrow\rangle\} H_{1}=\left[\begin{array}{cc}-\mu & 0 \\ 0 & -\mu\end{array}\right]$. (one could further use spin rotation symmetry, or S_{z} is conserved)
- $F_{2}=\{|\uparrow \downarrow\rangle\}, H_{2}=[U]$

Examples (two sites Hubbard model)

- $H=U\left(n_{1 \uparrow} n_{1 \downarrow}+n_{2 \uparrow} n_{2 \downarrow}\right)-t \sum_{\sigma}\left(c_{1 \sigma}^{\dagger} c_{2 \sigma}+c_{2 \sigma}^{\dagger} c_{1 \sigma}\right)-\mu N$
- Particle conservation: $F=F_{0} \oplus F_{1} \oplus F_{2} \oplus F_{3} \oplus F_{4}$
- It is trival to consider the zero particle state and one particle state. Also, particle hole symmetry. so does three and four particle state
- There are 4 states with S_{z} zero $\left|n_{1 \uparrow} n_{1 \downarrow} n_{2 \uparrow} n_{2 \downarrow}\right\rangle: 1010,1001$, 0110, 0101
- Notice, pay attention to sign for hopping term

Examples (two sites Hubbard model)

- There are 4 states with S_{z} zero $\left|n_{1 \uparrow} n_{2 \uparrow} n_{1 \downarrow} n_{2 \downarrow}\right\rangle: 1010,1001$, 0110, 0101

$$
H=\left(\begin{array}{cccc}
-2 \mu+U & -t & -t & 0 \\
-t & -2 \mu & 0 & -t \\
-t & 0 & -2 \mu & -t \\
0 & -t & -t & -2 \mu+U
\end{array}\right)
$$

Examples (two sites Hubbard model)

- One could use translational symmetry to block diagonalize the Hamiltonian, i.e, eigenstates of momentum:

$$
\begin{aligned}
\left|\psi_{1}\right\rangle & =\frac{1}{\sqrt{2}}(|1010\rangle-|0101\rangle) \\
\left|\psi_{2}\right\rangle & =\frac{1}{\sqrt{2}}(|1001\rangle-|0110\rangle) \\
H & =\left[\begin{array}{cc}
-2 \mu+U & 0 \\
0 & -2 \mu
\end{array}\right] \\
E & =\{U-2 \mu,-2 \mu\}
\end{aligned}
$$

Examples (two sites Hubbard model)

- One could use translational symmetry to block diagonalize the Hamiltonian, i.e, eigenstates of momentum:

$$
\begin{aligned}
\left|\psi_{1}\right\rangle & =\frac{1}{\sqrt{2}}(|1010\rangle+|0101\rangle) \\
\left|\psi_{2}\right\rangle & =\frac{1}{\sqrt{2}}(|1001\rangle+|0110\rangle) \\
H & =\left[\begin{array}{cc}
-2 \mu+U & -2 t \\
-2 t & -2 \mu
\end{array}\right]
\end{aligned}
$$

$$
E=\left\{\frac{1}{2}\left(-4 \mu-\sqrt{16 t^{2}+U^{2}}+U\right), \frac{1}{2}\left(-4 \mu+\sqrt{16 t^{2}+U^{2}}+U\right)\right\}
$$

Examples (two sites Hubbard model)

Figure: Two sites Hubbard model (eigenvalues for different U)

Examples (two sites Hubbard model)

- $H=H_{0}+\alpha \sum_{i} S_{i z}$
- For two-particle states, we add more states with $S_{z} \neq 0$ $\left|n_{1 \uparrow} n_{2 \uparrow} n_{1 \downarrow} n_{2 \downarrow}\right\rangle: 1100,0011\left(S_{z}=0\right.$ includes 1010, 1001, 0110, 0101)
- For $1100,0011, H=\left[\begin{array}{cc}2 \alpha-2 \mu & 0 \\ 0 & -2 \alpha-2 \mu\end{array}\right]$

Examples (two sites Hubbard model)

- Plot 6 eigenstates

Figure: Two sites Hubbard model (eigenvalues for different U) with magnetic field $\alpha=0.7$

Examples (two sites Hubbard model)

Figure: The critical magnetic field B_{c} with $U . t=1$.

