Continuous-time quantum Monte Carlo

Department of Applied Physics and Applied Math, Columbia University

Motivation: quantum impurity solver is needed for DMFT¹⁻³

[1] W. Metzner and D. Vollhardt, PRL 62, 324 (1989). [2] A. Georges and G. Kotliar, PRB 45, 6479 (1992). [3] G. Kotliar and D. Vollhardt, Phys. Today 57, 53 (2004).

Quantum Monte Carlo

SOLVING A QUANTUM MECHANICAL PROBLEM USING A RANDOMIZED ALGORITHM

types of QMC

(1) variational

 $\langle E(\{p\})\rangle = \frac{\int \Psi_T^*(R,\{p\})\hat{H}\Psi_T(R,\{p\})dR}{\int |\Psi_T(R,\{p\})|^2 dR}$

parameterize ψ , use Monte Carlo to compute *E*, then minimize

(3) determinantal (e.g. Hirsch-Fye) $Z = \int \mathcal{D}[\phi] \det G^{-1}(\{\phi\})$

imaginary time discretization, Hubbard-Stratonovich transformation

(2) diffusion

$$-\frac{d\Psi(R,\tau)}{d\tau} = \hat{H}\Psi(R,\tau)$$
GROUND
STATE
random walk for Schrödinger
equation in imaginary time to find ψ
(4) continuous-time

$$Z = \sum_{k} \int \mathcal{D}[\psi^{\dagger}\psi] e^{-S_{0}} \frac{(-1)^{k}}{k!} (\Delta S)^{k}$$
finite
diagrammatic expansion of partition
function

Types of CTQMC¹

<u>**CT-INT**</u>² – expand partition function in U

$$Z/Z_0 = 1 + \frac{(-U)}{1!} \int_0^\beta d\tau_1 \langle n_{\uparrow}(\tau_1) n_{\downarrow}(\tau_1) \rangle_0 + \frac{(-U)^2}{2!} \iint_0^\beta d\tau_1 d\tau_2 \langle n_{\uparrow}(\tau_1) n_{\downarrow}(\tau_1) n_{\uparrow}(\tau_2) n_{\downarrow}(\tau_2) \rangle_0 + \cdots$$

<u>**CT-AUX**</u>³ – like CT-INT but auxiliary field decomposition

$$\underline{\mathbf{CT-HYB}}^{4} - expand partition function in \Delta$$

$$Z = \int D[\psi^{\dagger}\psi] e^{-S_{c}} \sum_{k} \frac{1}{k!} \left[\sum_{\alpha\alpha'} \int_{0}^{\beta} d\tau \int_{0}^{\beta} d\tau' \psi_{\alpha'}(\tau') \psi_{\alpha}^{\dagger}(\tau) \Delta_{\alpha\alpha'}(\tau,\tau') \right]^{k}$$

<u>CT-J</u>⁵ – for Kondo-like models; combines aspects of CT-INT and CT-HYB

E. Gull et al., Rev. Mod. Phys. 83, 349 (2011). [2] A. N. Rubtsov et al., PRB 72, 035122 (2005); A. N. Rubtsov and A. I. Lichtenstein, JETP Lett. 80, 61 (2004). [3] E. Gull et al., Europhys. Lett. 82, 57003 (2008). [4] P. Werner and A. J. Millis, PRB 74, 155107 (2006); P. Werner et al., PRL 97, 076405 (2006).
 J. Otsuki et al., J. Phys. Soc. Jpn. 76, 114707 (2007).

Terminology

Impurity	single lattice site on which we treat the correlations
Bath	auxiliary electron reservoir mimicking the effect of the discarded lattice sites
Hybridization	coupling b/w impurity and bath
Impurity Green function G(ω)	Green function of the impurity problem
Lattice Green function G(k,ω)	Green function of the lattice at a particular k-point
Local Green function $G_{ii}(\omega)$	Lattice Green function summed over k-points

 $\frac{\text{Self-energy}}{\Sigma(\omega)}$

interaction-induced shift (real part) and broadening (imaginary part) of 1-particle energy levels

Hybridization-expansion CTQMC¹

[1] K. Haule, Phys. Rev. B 75, 155113 (2007).

Hybridization-expansion CTQMC

Taylor expansion of the exponential function for the hybridization part

$$Z = \int D[\psi^{\dagger}\psi] e^{-S_c} \sum_{k} \frac{1}{k!} \left[\sum_{\alpha\alpha'} \int_0^\beta d\tau \int_0^\beta d\tau' \psi_{\alpha'}(\tau') \psi_{\alpha}^{\dagger}(\tau) \Delta_{\alpha\alpha'}(\tau,\tau') \right]^k$$

rearrange terms to separate cluster and bath contributions

$$Z = \int D[\psi^{\dagger}\psi] e^{-S_c} \sum_k \frac{1}{k!} \int_0^\beta \prod_{i=1}^k d\tau_i \int_0^\beta \prod_{i=1}^k d\tau_i' \sum_{\alpha\alpha'} \prod_{i=1}^k [\psi_{\alpha'_i}(\tau'_i)\psi^{\dagger}_{\alpha_i}(\tau_i)] \prod_{i=1}^k \Delta_{\alpha_i\alpha'_i}(\tau_i,\tau'_i) \psi^{\dagger}_{\alpha_i}(\tau_i) = 0$$

average over impurity d.o.f. average over bath d.o.f.

trick is to combine all terms of the same order (both crossing and noncrossing) into a determinant to minimize sign problem

Hybridization-expansion CTQMC

$$Z = Z_c \sum_{k} \frac{1}{k!} \int_{0}^{\beta} d\tau_1 \int_{0}^{\beta} d\tau_1' \cdots \int_{0}^{\beta} d\tau_k \int_{0}^{\beta} d\tau_k' \sum_{\alpha_1 \alpha'_1, \dots, \alpha_k, \alpha'_k} \langle T_\tau \psi_{\alpha'_1}(\tau'_1) \psi_{\alpha_1}^{\dagger}(\tau_1) \cdots \psi_{\alpha'_k}(\tau'_k) \psi_{\alpha_k}^{\dagger}(\tau_k) \rangle_{cluster}$$

$$\times \frac{1}{k!} \det \begin{pmatrix} \Delta_{\alpha_1 \alpha'_1}(\tau_1, \tau'_1) & \Delta_{\alpha_1 \alpha'_2}(\tau_1, \tau'_2) & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots \\ \Delta_{\alpha_k \alpha'_1}(\tau_k, \tau'_1) & \cdots & \cdots & \Delta_{\alpha_k \alpha'_k}(\tau_k, \tau'_k) \end{pmatrix}$$

$$= \sum_{k=1}^{k} \int D[\psi^{\dagger} \psi] e^{-S_c} \qquad \langle O \rangle_{cluster} = \frac{1}{Z_c} \int D[\psi^{\dagger} \psi] e^{-S_c} O[\psi^{\dagger} \psi] e^{-S_c} O[\psi$$

average over cluster d.o.f.

This is the central equation of CT-HYB

Hybridization-expansion CTQMC

The basic idea is that we use a Monte Carlo (Metropolis) algorithm to "visit" the diagrams associated with a set of imaginary times

<u>example</u>

k=3 segments of τ corresponding to occupied fermion states

dotted lines connecting segments represent the hybridization function

3!=6 diagrams are combined into a determinant to minimize sign

application of ψ or ψ^{\dagger} is referred to as a "kink" in the time evolution

CT-HYB Monte Carlo moves

insertion of two kinks τ_{new} and τ_{new} at random times (one creation, one destruction) of same spin

$$P_{add} = min\left[\left(\frac{\beta N_b}{k+1}\right)^2 \frac{\mathcal{Z}_{new}}{\mathcal{Z}_{old}} \frac{\mathcal{D}_{new}}{\mathcal{D}_{old}}, 1\right]$$

$$\mathcal{Z}_{new} = \langle T_{\tau} \psi_{\alpha'_{new}}(\tau'_{new}) \psi^{\dagger}_{\alpha_{new}}(\tau_{new}) \psi_{\alpha'_1}(\tau'_1) \psi^{\dagger}_{\alpha_1}(\tau_1) \psi_{\alpha'_k}(\tau'_k) \psi^{\dagger}_{\alpha_k}(\tau_k) \rangle_{cluster}$$

removal of two kinks τ_{new} and ${\tau_{new}}'$ at random times (one creation, one destruction) of same spin

$$P_{remove} = min\left[\left(\frac{k}{\beta N_b}\right)^2 \frac{\mathcal{Z}_{new}}{\mathcal{Z}_{old}} \frac{\mathcal{D}_{new}}{\mathcal{D}_{old}}, 1\right]$$

shift of one operator in time and insertion/removal of multiple kinks are not necessary but are used to reduce sampling time

CT-HYB Monte Carlo moves

CT-HYB Monte Carlo moves

Example of 1 move from an actual run

Codes

- Kristjan Haule's стомс (part of dmft_w2k code on his website) has CT-HYB
- **ALPS** (Algorithms and Libraries for Physics Simulations)

• **TRIQS** (a Toolbox for Research on Interacting Quantum Systems)

Tricks to speed things up in Haule's code

$$\begin{split} \mathcal{Z}_{D} &= \mathrm{Tr} \bigg(T_{\tau} \mathrm{exp} \bigg[-\int_{0}^{\beta} d\tau H_{c}(\tau) \bigg] \psi_{\alpha_{1}}(\tau_{1}') \\ &\times \psi_{\alpha_{2}}^{\dagger}(\tau_{2}) \cdots \psi_{\alpha_{n-1}}(\tau_{n-1}') \psi_{\alpha_{n}}^{\dagger}(\tau_{n}) \bigg) \\ &= \sum_{\{m\}} e^{-E_{m_{1}}\tau_{1}'} (F^{\alpha_{1}})_{m_{1}m_{2}} e^{-E_{m_{2}}(\tau_{2}-\tau_{1}')} \\ &\times (F^{\dagger \alpha_{2}})_{m_{2}m_{3}} \cdots (F^{\alpha_{n-1}})_{m_{n-1}m_{n}} e^{-E_{m_{n}}(\tau_{n-1}')} \\ &\times (F^{\dagger \alpha_{n}})_{m_{n}m_{1}} e^{-E_{m_{1}}(\beta-\tau_{n})} \end{split}$$

typical form of cluster component of the partition function

$$(F^{\alpha\dagger})_{m'm}\equiv \langle j|\langle m'|\psi^{\dagger}_{\alpha}|m\rangle|i\rangle$$

- F matrices can be very large (e.g. 2¹⁴ states for *f* shell
- Large **matrix mult** is the bottleneck, particularly when we go beyond density-density interactions (non-Ising like *J*)
- Atomic states with same N, S_z, and K are grouped together (**superstates**)
 -τ_n) so can avoid many zero matrix elements
- Insertion of a kink is fairly local in time so the code stores chains of products in the eqn to the left from both sides
- Sampled average of probability of atomic states is used to eliminate low-probability states dynamically

applying spin-up bath to state 1 yields state 2

(only 1 for i and j here since atomic superstates are 1D)

Ran <u>3 U values for 7 temperatures</u> each with <u>8 DMFT iterations</u>

For each iteration CTQMC employs <u>100 million Monte Carlo steps/core</u> on the <u>20 cores</u> of our dual-socket machines

metal-insulator transition for increasing T and increasing U

2-orbital CIX file example: LaNiO₃ E_a

 $X^{2}-V^{2}$

Future Work

- 1) Better understand how the CIX file is constructed for more complicated cases
- 2) Try ALPS implementation of CT-HYB
- 3) Use this solver to study Li_xCoO_2 and Li_xFePO_4

Acknowledgements

Thanks to Jia, Hyowon, and Chris for useful discussions